

Representation of DOE SNF in the Yucca Mountain LA

Bill Hurt

NSNFP Spent Fuel Technical Exchange Washington, DC January 2004

Providing for safe, efficient disposition of DOE spent nuclear fuel

Objective of DOE SNF Representation

- Minimize reliance on fuel-specific information through:
 - Reliance on engineered barriers
 - Use of a surrogate model rather than modeling individual fuels
 - Use of grouping to simplify analyses
 - Use of fuel-specific information is limited to sensitivity analyses

General DOE SNF Description

- Description of the canisters (physical, material, loading, etc.)
- Overview of the generation of DOE SNF (moderators, coolants, reactor mission, and licensing agencies)
- Description of the ranges of parameters for the 34 DOE SNF groups (physical, chemical, thermal, and radionuclear)

Grouping for Simplification of Sensitivity Analyses

- All DOE SNF placed into 34 groups
- The 34 groups are then combined for analyses into the following:
 - 11 TSPA groups
 - 9 Criticality groups
 - 6 DBE groups

Pre-Closure Radionuclide Confinement

- DOE SNF is represented as SNF in a robust canister
- Category 1 & 2 releases will be prevented by:
 - Minimizing the probability of a drop
 - Limiting the lift height
 - Using canisters unlikely to breach if dropped

Pre-Closure Radionuclide Confinement (continued)

- Beyond Category 2 calculations:
 - Based on the nominal inventory for each SFD record
 - Canister provides partial confinement
 - Cladding/matrix minimize release
 - HEPA filters mitigate release
 - Not expect to be included in LA
 - Not expected to exceed the Category 2 limits

Post-Closure Waste Isolation

- Single DOE SNF surrogate model based on:
 - Total radionuclide inventory
 - Number of DOE SNF Canisters and WPs
- Single DOE SNF surrogate model is used for:
 - Nominal scenario (along with the instantaneous degradation model)
 - All disruptive scenarios
 - Human intrusion event
 - Groundwater protection standards
 - Barrier analyses

Post-Closure Waste Isolation (continued)

- Sensitivity studies may include calculations based on:
 - Average inventory per TSPA Groups
 - Best-estimate degradation model

Pre-Closure Criticality Control

- Probability is expected to be below the truncation limit based on:
 - Moderator controls on the facility
 - Low probability of a canister breach
 - Canister storage racks that limit interaction
- Additional measures to reduce the probability may include:
 - Geometry controls (i.e., baskets)
 - Neutron absorbers
 - Fissile/assembly loading limits

Post-Closure Criticality Control

- Probability is expected to be below the truncation limit based on:
 - Waste package
 - Drip shields
 - Natural barriers
 - Geometry controls
 - Neutron absorbers
 - Fissile/assembly loading limits

Summary of DOE SNF Representation for LA

- General description of the 34 groups
- PSA analyses relies heavily on engineered systems
 - All fuel except intact commercial is packaged in standard canisters
- Waste isolation analyses use a single surrogate model for all releases
- Criticality analyses will be completed for 2 of 9 groups
 - Supplemental analyses must be completed to support a future license amendment

